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Carbon monoxide (CO) poisoning is common in modern society,
resulting in significant morbidity and mortality in the United States
annually.Over thepast twodecades, sufficient informationhasbeen
published about carbon monoxide poisoning in the medical litera-
ture to draw firm conclusions aboutmany aspects of the pathophys-
iology, diagnosis, and clinical management of the syndrome, along
with evidence-based recommendations for optimal clinical practice.
This article provides clinical practice guidance to the pulmonary and
critical care community regarding the diagnosis, management, and
prevention of acute CO poisoning. The article represents the con-
sensus opinion of four recognized content experts in the field.
Supporting data were drawn from the published, peer-reviewed
literature on CO poisoning, placing emphasis on selecting studies
that most closely mirror clinical practice.
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Carbon monoxide (CO) poisoning results in an estimated 50,000
emergency department visits in the United States annually (1)
and is one of the leading causes of poisoning death. The last two
decades have witnessed an enormous expansion of knowledge
about clinical CO poisoning, much of it published in the peer-
reviewed medical literature. That body of information is sufficient
to draw firm conclusions about many aspects of the pathophysi-
ology, diagnosis, and clinical management of the syndrome, along
with construction of evidence-based recommendations for best
clinical practice related to CO poisoning.

The four authors have published more than 100 papers on CO
mechanisms, and the diagnosis and management of CO poison-
ing. In this article, they have collaborated to synthesize a state-
of-the-art clinical practice approach to the CO-poisoned patient.
This article represents a consensus of expert opinion. It is an
evidence-based summary and not a meta-analysis or a compre-
hensive review of CO poisoning, but rather addresses the clinical
issues that most frequently arise regarding CO poisoning.

In 1857, the physiologist Claude Bernard described the fact
that CO produces hypoxia by binding with hemoglobin, reducing

the oxygen-carrying capacity of the blood and producing hypoxia
in the tissues (2). CO also shifts the oxyhemoglobin curve to the
left, which further reduces tissue PaO2

. This hemoglobin mech-
anism is reversible because the binding of the CO molecule at
the oxygen-carrying heme sites on hemoglobin is competitive
with oxygen. The formation of carboxyhemoglobin (COHb) and
the attendant tissue hypoxia were considered until fairly recently
to be the major mechanism of CO toxicity. A number of scientific
and clinical observations have indicated that additional mech-
anisms must be involved. For instance, the clinical presentation
of the CO-poisoned patient has repeatedly been noted not to
correlate with the blood COHb level (3, 4), and clinical improve-
ment in the patient’s condition does not correlate with clearance
of the blood COHb level. Moreover, in canine studies, the toxicity
of CO is greater when CO is administered by inhalation than by
transfusion of CO-exposed red blood cells to the same COHb
level (5), suggesting the importance of cellular toxicity caused
by the cumulative effects of CO diffusing into the tissues, partic-
ularly during long exposures. Indeed, a low tissue PO2 promotes
cellular CO accumulation and CO binding to heme proteins.

It is now known that carbon monoxide poisoning causes both
tissue hypoxia and direct cellular changes involving immunolog-
ical or inflammatory damage by a variety of mechanisms (6–16).
Some of these have been demonstrated only in animal models
to date, whereas others have been confirmed in human studies.
These mechanisms include the following:

d Binding to intracellular proteins (myoglobin, cytochrome a,a3)

d NO generation → peroxynitrite production

d Lipid peroxidation by neutrophils

d Mitochondrial oxidative stress

d Apoptosis (programmed cell death)

d Immune-mediated injury

d Delayed inflammation

Indeed, some of these effects are related to interference with the
normal signaling functions of endogenous CO, which is a physi-
ological gas produced by enzymatic heme degradation (17) and
is even being tested in preclinical and phase 1 studies as poten-
tial therapy in specific diseases (18). Most of the toxic mecha-
nisms identified have been demonstrated to be modulated more
favorably by hyperbaric than by normobaric oxygen. The contri-
bution of each of these mechanisms of toxicity to clinical CO
poisoning and in humans has not yet been determined. Although
the use of CO as a therapeutic molecule is an exciting area, it is
not the topic of this discussion of CO poisoning and its manage-
ment. The interested reader is referred to the excellent review of
the therapeutic CO field by Motterlini and Otterbein (18).
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DIAGNOSIS

The diagnosis of CO poisoning is a clinical one: the common def-
inition requires a history of recent CO exposure, the presence of
symptoms consistent with CO poisoning, and demonstration of
an elevated carboxyhemoglobin level (Figure 1).

Symptoms are required for diagnosis, but no single symptom
is either sensitive or specific in CO poisoning. The most common
symptoms in one series of 1,323 patients referred for treatment of
CO poisoning in the United States included headache, dizziness,
nausea/vomiting, confusion, fatigue, chest pain, shortness of
breath, and loss of consciousness (19). A high index of suspicion
is warranted, particularly during cold weather, in patients with
acute coronary syndrome and arrhythmias. Failure to diagnose
CO poisoning can have disastrous consequences for the patient
and other members of an affected household. Despite the fact
that some authors have long maintained that certain symptoms
correlate closely with COHb levels, this is incorrect (19). There
is no combination of symptoms that either confirms or excludes
a diagnosis of CO poisoning. Although headache is the most
common symptom, there is no characteristic headache pattern
typical of CO poisoning (20).

For decades physicians have been taught to look for “cherry
red” skin coloring in patients with CO poisoning, but this is rare
(21, 22). The concept is that the color of blood changes when it
is loaded with CO, as described by Hoppe in 1857 (23). Because
carboxyhemoglobin is a brighter shade of red than oxyhemo-
globin and the color of capillary blood contributes to skin color,
it would seem reasonable that a poisoned patient’s appearance
might change with sufficient amounts of circulating COHb.
However, a lethal carboxyhemoglobin level is required for a
human’s skin and mucous membranes to appear “cherry red.”
Even when reflectance spectrophotometry is used to measure
skin color of individuals dying of CO poisoning, less than one-
half have “cherry red” skin (24).

The clinical diagnosis of acute CO poisoning should be con-
firmed by demonstrating an elevated carboxyhemoglobin level.
COHb levels of at least 3–4% in nonsmokers and at least 10% in
smokers can be considered outside the expected physiological
range (25). The COHb level in smokers is generally in the 3–5%
range (25). In the Second National Health and Nutrition Exam-
ination Survey (NHANES II), those who smoked one pack
per day had COHb levels up to 5.6% (26). As a general rule, for
each pack of cigarettes smoked per day, the COHb rises approx-
imately 2.5% (27). Rarely, the COHb level in selected heavy

smokers, especially those with underlying lung pathology, can
be more than 10% (28). COHb can be measured by laboratory
spectrophotometry of blood obtained at the scene and trans-
ported with the patient to the hospital (29) or obtained at the
time of emergency department evaluation. Laboratory spectro-
photometry uses an instrument called a CO oximeter (or spec-
trophotometer) to measure the concentrations of the various
hemoglobin species. This is done by transilluminating a speci-
men of blood with multiple wavelengths of light, measuring
differential absorbance at the various wavelengths, and then
calculating concentrations from the known absorption spectrum
of each form of hemoglobin. Either arterial or venous blood
may be used, as the COHb levels are similar (30, 31), provided
the CO body stores are in near equilibrium with the CO partial
pressure in the lungs. Under non–steady state conditions, ve-
nous COHb may be slightly above or below arterial COHb
because of CO uptake or egress from tissues.

Confusion regarding arterial oxygenation and the presence of
COHb may arise in two areas. First, many newer blood gas
machines incorporate CO oximeters and perform spectropho-
tometry on injected blood, directly measuring the concentra-
tions of oxy-, deoxy-, carboxy-, and methemoglobin. The
arterial oxygen saturation (SaO2

) reported with the blood gas
results represents the amount of oxyhemoglobin present rela-
tive to the sum of all four hemoglobin species. This has not
always been the case. Older blood gas machines contained
algorithms for the calculation of oxygen saturation based on
the oxyhemoglobin dissociation curve and effect of pH. An
arterial blood specimen with pHa 7.40, PaO2

100 mm Hg, and
PaCO2 40 mm Hg would be calculated from PaO2

and pHa to
have an SaO2

of 97–98%. That result would be reported, irre-
spective of the amount of carboxyhemoglobin present. Thus,
a patient with 40% COHb and PaO2

100 mm Hg would be
reported to have an arterial oxygen saturation of 97–98%,
when in reality 40% of the hemoglobin is bound with CO
and the true fraction carrying oxygen would be 60% at maxi-
mum. This may remain an issue at a facility using a blood gas
machine without a CO oximeter.

A second area of potential confusion relates to the fact that
standard pulse oximeters using two wavelengths (660 and 990
nm) cannot differentiate carboxyhemoglobin (32). COHb and
oxyhemoglobin (O2Hb) have similar absorbances (extinction
coefficients) at 660 nm. This results in pulse oximeters measur-
ing COHb similarly to O2Hb. This was demonstrated in one
series of 30 CO-poisoned patients with COHb at least 25% mea-
sured by CO oximeter and simultaneous pulse oximeter oxygen
saturation (SpO2

) greater than 90% in all (32). Because of differ-
ing extinction coefficients at 990 nm, COHb and O2Hb are
measured similarly but not identically. This becomes apparent
only when COHb is greater than 40%. In a patient with COHb
50%, the SaO2

calculated from blood gas values is approximately
5% higher than the SpO2

value from a pulse oximeter (32).
Carboxyhemoglobin can also be measured at the scene by fin-

gertip pulse CO oximetry (33, 34), a technology commercially
available since 2005. The accuracy and reliability of the avail-
able pulse CO oximeter in the clinical setting have been ques-
tioned (35, 36) and also supported (37, 38). As such, if pulse CO
oximetry is the basis for diagnosis, we recommend laboratory-
based measurements by spectrophotometry for confirmation on
arrival in the emergency department for patients being consid-
ered for hyperbaric oxygen therapy, until more experience has
been gained with this technique. Because most hospitals do not
have hyperbaric chambers, hyperbaric oxygen administration
requires transfer, inconvenience, cost, and a small risk. As such,
it would seem reasonable to confirm the pulse CO oximeter
measurement by laboratory CO oximetry in that group. It is not

Figure 1. Triad required for diagnosis of acute carbon monoxide

poisoning.
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necessary to document an elevated COHb level in symptomatic
persons who were in the same environment and exposed at the
same time as someone with a documented COHb elevation. Be-
cause the COHb level serves only to confirm the diagnosis and
does not predict either symptoms or outcome, measuring it in
the simultaneously exposed, symptomatic individual does not
change clinical management. In patients referred for suspected
exposures to elevated environmental CO levels, COHb should
be measured to document the exposure.

CO-poisoned patients are often discovered or present to
the hospital emergency department with confusion or altered
mental status. Whether or not there is a reliable exposure his-
tory, 100% normobaric oxygen should be administered to any
person suspected of having CO poisoning while waiting for
confirmation of the diagnosis by measurement of the COHb
level (16).

In addition to considering a diagnosis based on the presenting
symptoms and potentially an elevated COHb level, which could
be low, or normal because of the interval from CO exposure to
COHb measurement and oxygen treatment, information about
the poisoning environment is important. Sometimes emergency
or ambulance personnel measure ambient CO levels. These lev-
els may be lower than at the time of actual CO exposure because
of open doors or windows, but elevated ambient levels can con-
firm CO poisoning. It is important to discover the CO exposure
source before discharging the patient, and for the source to be
eliminated to prevent re-exposure.

MANAGEMENT

In all cases of CO poisoning, high-flow oxygen by mask or en-
dotracheal tube is the front-line treatment (16). Oxygen
accelerates the elimination of COHb and alleviates tissue
hypoxia compared with air. It should be recognized, however,
that no clinical trials have demonstrated superior efficacy of
normobaric 100% oxygen over air (16). Increasing alveolar
ventilation by adding CO2 to O2 for spontaneously breathing
individuals was advocated to hasten COHb removal, based on
observations dating to the 1920s (39). There are, however,
marked individual differences in ventilatory responses, thus

making use of fixed CO2–O2 mixtures unreliable and also
risky because use may exacerbate acidosis in patients who
are retaining CO2 because of ventilatory depression from
either severe CO poisoning or ingested drugs (40). Newer
apparatus to increase ventilation while maintaining normo-
capnea has been described, but because CO pathophysiology
is more complex than merely COHb-mediated hypoxia, ap-
plying such interventions may add complexity with limited
benefits (41).

When hyperbaric oxygen is not available, it is reasonable to
recommend the administration of 100% normobaric oxygen in
the emergency department until COHb is normal (<3%) and
the patient’s presenting symptoms of CO poisoning have re-
solved, usually for about 6 hours. The COHb is influenced by
the fractional concentration of inhaled oxygen (FIO2

) and falls
more quickly as the FIO2

increases. One hundred percent
normobaric oxygen accelerates the dissolution of COHb, with
an elimination half-life of approximately 74 minutes (42)
compared with 320 minutes while breathing room air (43).
For example, a poisoned patient with an initial COHb of
30% could have a relatively modest COHb level less than
10% if he breathed 100% normobaric oxygen for 2 hours.
The FIO2

, the duration of oxygen inhalation, and the interval
from when the CO exposure stopped to when the COHb level
was measured are therefore important. If the patient has been
compliant with high-flow oxygen breathing for that approxi-
mately 6 hours and feels well, repeating the COHb level is not
necessary.

Because of the relative inconvenience and cost of hyperbaric
oxygen, a number of studies have tried to compare the efficacy of
hyperbaric and normobaric oxygen in the treatment of CO poi-
soning (25, 44–50) (Table 1). Most of these studies have had
significant methodological limitations that make drawing infer-
ences about the efficacy of hyperbaric oxygen difficult (51–54).
Problems have included such things as insignificant differences
in the oxygen dose in the treatment arms (52), randomization to
lengthy or impractical durations of normobaric oxygen admin-
istration (48), low rates of short-term follow-up (4–6 wk after
poisoning and treatment) (48), clinically irrelevant outcome
measures (42), and absence of any long-term follow-up (44–48,

TABLE 1. SUMMARY OF STUDIES COMPARING NORMOBARIC WITH HYPERBARIC 100% OXYGEN FOR TREATMENT OF CARBON
MONOXIDE POISONING

Study (Ref. No.) Year Design Intervention Result n

Raphael and

colleagues (44)

1989 Randomized; if LOC,

HBO2 used

HBO2 (2.0 ATA) vs. 6 h mask O2 if no

LOC; 1 HBO2 vs. 2 HBO2 if LOC

No difference in symptoms between

groups at 1 mo

343

Ducasse and

colleagues (45)

1995 Randomized,

not blinded

HBO2 (2.5 ATA) vs. mask O2 HBO2 improved cerebral blood flow

reactivity to acetazolamide

26

Thom and

colleagues (46)

1995 Randomized, not blinded,

excluded LOC

HBO2 (2.9 ATA) vs. mask O2 No sequelae in HBO2 vs. 23% for

mask O2; NNT ¼ 4.3

65

Scheinkestel and

colleagues (48)

1999 Double-blind RCT; cluster

randomization;

included LOC

3 to 6 HBO2 (2.8 ATA) sessions

vs. 3 d of mask O2

Very high number lost to 1 mo

follow-up (54%), limiting any conclusion

191

Mathieu and

colleagues (47)

1996 Randomized, not blinded,

excluded LOC

HBO2 vs. mask O2 Abstract only—HBO2 reduced sequelae at

1 and 3 mo; none at 1 yr

575

Weaver and

colleagues (49)

2002 Double-blind randomized,

included LOC

3 HBO2 (3 ATA for initial) in 24 h vs.

100% O2 1 2 sham chamber sessions

Reduced cognitive sequelae (25 vs. 46%)

at 6 wk (OR, 0.39; 95% CI, 0.2–0.78;

P ¼ 0.007); NNT ¼ 4.8; with significant

differences persisting to 12 mo

152

Annane and

colleagues (50)

2011 Randomized, not blinded Trial 1: HBO2 session (2.0 ATA) 1 4 h

mask O2 vs. 6 h mask O2 if transient LOC

Trial 2: 2 HBO2 1 4 h mask O2 vs.

1 HBO2 1 4 h mask O2 if initial coma

Outcomes measured by symptom

questionnaire and physical examination at

1 mo. Trial 1—no difference in outcome as

measured. Trial 2—“complete recovery”

rate 47% with 2 HBO2 vs. 68% with 1 HBO2

385

Definitions of abbreviations: ATA ¼ atmosphere absolute; CI ¼ confidence interval; HBO2 ¼ hyperbaric oxygen; LOC ¼ loss of consciousness; NNT ¼ number needed to

treat; OR ¼ odds ratio; RCT ¼ randomized controlled trial.
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50). The latter is especially important because it has been dem-
onstrated that even individuals with significant structural brain
injury on neuroimaging from CO poisoning can show long-term
improvement in cognitive functioning impairment for 3 to 12
months postpoisoning (55).

Some authors have used a statistical meta-analysis from differ-
ent trials and attempted to assign value to each study and then
sum their discordant results for guidance. The American College
of Emergency Physicians (ACEP) (53) and the Cochrane Review
(54) both used this approach to the analysis of CO poisoning
treatment and each concluded that additional, properly con-
ducted trials would be desirable. Until such studies are available,
patients must be treated on the basis of the information avail-
able. It is arguably as appropriate to select the existing study
with the best design that most closely addresses the actual prac-
tical handing of these patients and use its findings to guide clin-
ical practice. We believe that this study is that of Weaver and
colleagues, published in 2002 (49), with supplemental informa-
tion published in 2004 (56). In that study, CO-poisoned patients
who received three hyperbaric oxygen treatments within 24
hours of presentation manifest approximately one-half the rate
of cognitive sequelae at 6 weeks, 6 months, and 12 months after
treatment as those who were treated with normobaric oxygen.

Hyperbaric oxygen should at least be considered in all cases
of serious acute CO poisoning and normobaric 100% oxygen
continued until the time of hyperbaric oxygen administration.
Although risk factors for long-term cognitive impairment in
patients not treated with hyperbaric oxygen have been identified,
including age 36 years or more, exposure for at least 24 hours,
loss of consciousness, and COHb at least 25%, no criterion is
100% predictive (3). In young patients in otherwise good health
who have been experimentally exposed to CO for a short period
of time, usually 2 hours or less, and with COHb levels less than
20%, acute measurable neurobehavioral effects are rarely man-
ifested (57). However, a similar incidence of residual cognitive
sequelae 6 weeks after CO poisoning has been reported in one
group of patients with apparently milder poisoning compared
with those with more severe poisoning (58). Thus, treatment
decisions in the mildly poisoned patient are difficult and the
subject of controversy, even among experts in the field. Pediatric
CO poisoning can pose special challenges as inability to com-
municate can limit historical accounts, but in large series there
appear to be no marked differences in manifestations versus
those reported in adult populations (59–62).

Apolipoprotein E (APOE) is a 299-amino acid lipid-binding
protein with three human isoforms: e2, e3, and e4. The e4 allele
occurs in 14–25% of the population (63). APOE is involved in
the distribution of cholesterol in the brain and neuritic growth
and repair (64). APOE is up-regulated after neural injury (65).
The presence of the ɛ4 allele is associated with worse outcome
after brain injury (66–68). Because the APOE genotype is as-
sociated with the degree of damage in various brain injury dis-
orders, researchers characterized the APOE alleles in patients
with CO poisoning treated with hyperbaric or normobaric oxy-
gen in a randomized trial (49). They discovered an interaction
between APOE genotype and the response to hyperbaric oxy-
gen treatment in patients with acute CO poisoning (69). Those
possessing the e4 allele may not derive benefit of treatment with
hyperbaric oxygen, whereas those who do not have the e4 allele
appear to have a reduction in the incidence of cognitive se-
quelae after hyperbaric oxygen therapy. Because most individ-
uals in the general population do not carry the e4 allele, some
recommend hyperbaric oxygen for all patients with acute CO
poisoning, including those with milder poisoning (69).

Hyperbaric oxygen treatment may be precluded by such things
as patient condition (70), logistical problems, and social issues,

among others. For example, patients with significant body burns
in addition to CO poisoning from a fire may be at greater risk for
mortality from their burns than CO poisoning. They should be
managed in a specialized burn unit and cared for by a qualified
burn surgeon. The decision regarding use of HBO2 should be
deferred to an experienced burn surgeon.

Other special populations, such as pregnant women and young
children, are at risk for permanent sequelae of CO poisoning, and
adult treatment criteria are generally applied to these patients. In
pregnancy, fetal distress and fetal death are special concerns in CO
poisoning, and HBO2 has been administered safely to pregnant
women, but there are no prospective studies of efficacy.

Because only about 3%of CO-poisoned patients who come to
hospital-based medical management die and no study to date has
clearly shown a reduction in mortality with hyperbaric versus
normobaric oxygen therapy (71), the goal of hyperbaric treat-
ment is the prevention of long-term and permanent neurocog-
nitive dysfunction, not enhancement of short-term survival rates.
Hyperbaric oxygen should not bewithheld because a CO-poisoned
individual is doing well clinically and appears not likely to die
from the event (16).

The optimal dose and frequency of hyperbaric oxygen treat-
ments for acute carbon monoxide poisoning remain unknown
(51). As such, the protocol used and number of treatments ad-
ministered are left to the discretion of the managing hyperbaric
physician. In the study by Weaver and colleagues, noted previ-
ously, patients were treated at 3.0 atm abs during their first
hyperbaric oxygen treatment (49). Of 1,165 patients treated from
2008 to 2011 and reported to a national surveillance system,
804 (69%) were also treated at 3.0 atm abs (72). It is reason-
able to retreat persistently symptomatic patients to a maximum
of three treatments, the number used for all patients in the 2002
study by Weaver and colleagues (49). Information for further
guidance on treatment practices is available in the form of survey
data gathered from U.S. hyperbaric treatment facilities (73).

If the CO exposure is believed to be intentional, toxicology
screening should be considered to assess for toxic coingestions.
In one study of 426 patients referred for treatment of intentional
poisoning, 44% reported coingestion of other drugs or ethanol
(74). Among patients with coingestions, 66% ingested ethanol.
If a patient with intentional CO poisoning has mental status
changes that seem disproportionate to his reported CO expo-
sure, coingestion should be ruled out with measurement of a
blood alcohol level, at a minimum.

Severe metabolic acidosis correlates with a high short-term
mortality rate in CO-poisoned patients and, if the CO source
was a house fire, is likely due to concomitant cyanide poisoning
(71). That study demonstrated short-term mortality of 30–50%
in CO-poisoned patients with initial pHa not exceeding 7.20, re-
gardless of COHb levels. If arterial blood gas analysis demon-
strates severe metabolic acidosis with pH less than 7.20 (71) or
a plasma lactate level equal to or greater than 10 mmol/L (75)
and the source of CO was a house fire, we believe that consid-
eration should be given to empiric treatment for cyanide poi-
soning. A specific antidote is hydroxocobalamin, which has few
side effects in individuals with smoke inhalation (75, 76). Smoke
is a heterogeneous mixture of particulates, respiratory irritants,
and systemic toxins. Each of these agents, along with heat, con-
tributes to the pathological insult and treatment recommenda-
tions are beyond the scope of this article. Current treatment is
based on supportive care and—not surprisingly—concomitant
smoke inhalation with CO poisoning compounds health risks
(77, 78).

All patients treated for acute accidental CO poisoning should
be seen in clinical follow-up 1–2 months after the event. Although
uncommon, late or evolving cognitive impairments including such
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things as memory disturbance, depression, anxiety, inability to
calculate, vestibular problems, and motor dysfunction can develop
(16, 49, 79–82). These adverse sequelae can occur even after acute
treatment of CO poisoning. If possible, a family member should
accompany the patient to the follow-up appointment to provide
their observations. Any person not believed to have recovered to
baseline functioning by that time should be referred for formal
neuropsychological evaluation, as well as symptom-directed eval-
uation and treatment. Individuals surviving an episode of acciden-
tal CO poisoning have an increased long-term mortality rate, as
compared with the normal population (83). Causes of excess death
(falls from heights, motor vehicle accidents, accidental drug over-
dose, etc.) suggest that residual brain injury may play a role.
Patients with evidence of cardiac damage after poisoning should
be referred for appropriate cardiology evaluation.

Persons surviving an episode of intentional CO poisoning
are at extreme risk for premature death due to subsequent
completion of suicide (83). All patients treated for intentional
CO poisoning should have mandatory psychiatric follow-up.
Family members should be made aware of this and recruited
to assist in ensuring compliance.

PREVENTION

It is thought that public education programs designed to increase
awareness of CO poisoning risks and the placement of warning
labels on fuels or devices that emit large amounts of CO are ef-
fective at reducing the incidence of poisoning. When it was rec-
ognized in the early 1990s that many of those poisoned through
indoor use of charcoal briquettes did not speak English (84),
a nonverbal pictogram warning against indoor use was man-
dated on bags of charcoal briquettes starting in 1998 by the
U.S. Consumer Product Safety Commission (CPSC). CPSC data
show that from 1981 to 1997 there were approximately 25 CO
deaths in the United States annually, due to charcoal briquettes.
From 1998 to 2007, that number was reduced to approximately
10 deaths per year.

Planning effective educational programs and warning labels
requires accurate knowledge of CO poisoning epidemiology.
From 2008 to 2011, theU.S. Centers forDisease Control and Pre-
vention teamed with the Undersea and Hyperbaric Medical So-
ciety (Durham, NC) to collect unidentified demographic and
epidemiologic data on 1,912 CO-poisoned patients treated in
the United States (85, 86). It is hoped that the insights gained

will lead to enhanced effectiveness for public education pro-
grams and poisoning prevention.

As an example, CO poisoning has been shown to be especially
common during storm-related power outages, when people turn
to the indoor use of charcoal briquettes for cooking and heating,
improper use of gasoline-powered electrical generators to pro-
vide electricity, and indoor use of gasoline-powered pressure
washers to clean up (87). Sufficient data are available to predict
the predominant sources of CO depending on geography and
type of storm, as well as the window of opportunity for interven-
tion after the storm strikes. Broadcasting public service warnings,
multilingual in some cases, offers the potential for significant
poisoning prevention.

Significant opportunities exist to prevent CO poisoning through
the use of CO alarms (88, 89). The U.S. Centers for Disease
Control and Prevention recommend a CO alarm in every res-
idence (90). They should be installed in the hallway outside
sleeping areas (91). Even though CO is slightly lighter than the
mixture of nitrogen and oxygen comprising air, CO alarms can be
installed at any height because the gas diffuses rapidly through-
out an enclosed space (92).

Legislationmandating the installation of residential CO alarms,
in addition to smoke alarms already present, has been enacted by
numerous states and is currently being considered by many others
(93). The state laws differ mainly regarding whether homes with-
out fuel-burning appliances or attached garages are exempted
from required CO alarm installation. It is our opinion that they
should not be exempted because a large proportion of patients
treated for severe CO poisoning in the United States are exposed
from CO-emitting devices (e.g., charcoal grills, gasoline-powered
electrical generators) that are brought indoors or otherwise im-
properly operated (73).

One publication has emphasized that proper operation of res-
idential CO alarms themselves is equally important (94). Among
a sampling of 30 CO alarms in current residential use, 12 (40%)
were older than 10 years. Of these, 8 (75%) malfunctioned when
tested. Depending on the make and model, CO alarms require
replacement at either 5 or 7 years after installation. Many newer
models alert the consumer when replacement is necessary.

CONCLUSIONS

An enormous body of information about carbonmonoxide poison-
ing has been developed in the past two decades. Most accidental

TABLE 2. KEY MESSAGES ON CARBON MONOXIDE POISONING

I. Basic pathophysiology: Several mechanisms of CO toxicity exist, in addition to hypoxemia from carboxyhemoglobin (COHb) formation

II. Diagnosis

a. Symptoms: Nonspecific. Most common are headache, dizziness, nausea/vomiting, confusion, fatigue, chest pain, shortness of breath, and loss of consciousness

b. Signs: Cherry red discoloration is rare

c. Role of carboxyhemoglobin level: Confirms clinical diagnosis. Correlates poorly with symptoms or prognosis

d. Prediagnosis management: Administer 100% oxygen while waiting for COHb level

III. Management

a. Normobaric oxygen therapy: If chosen for treatment, 100% oxygen by nonrebreather facemask or endotracheal tube until COHb normal (,3%) and patient

asymptomatic (typically 6 h)

b. Selection for hyperbaric oxygen (HBO2) therapy: Currently not completely clarified. Poisoned patients with loss of consciousness, ischemic cardiac changes,

neurological deficits, significant metabolic acidosis, or COHb . 25% warrant HBO2. More mildly poisoned patients may be treated at the discretion of the

managing physician (see text)

c. Goals of HBO2 therapy: Prevent neurocognitive sequelae

d. Optimal HBO2 protocol: Unknown. Recommend retreatment of persistently symptomatic patients to a maximum of 3 treatments

e. Intentional poisonings: Coingestion of other toxins commons. Consider toxicological screening

f. Concomitant cyanide poisoning: Suspect if CO source is house fire. Consider empiric treatment if pHa , 7.20 or plasma lactate . 10 mmol/L

IV. Patient follow-up

a. Accidental poisoning: Follow-up in 4–6 wk to screen for cognitive sequelae

b. Intentional poisoning: Psychiatric follow-up mandatory in light of high rate of subsequent completed suicide

V. Prevention

a. Public education: Educate about proper generator use and risk from combustion of fuels indoors

b. CO alarms: Encourage minimum of 1 per home, located near sleeping area. Replace alarms every 5–7 yr, as per manufacturer’s instructions
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CO poisoning should be preventable. However, when it is not pre-
vented, these guidelines offer clear recommendations regarding
optimal clinical practice, based on current information on the di-
agnosis and management of patients with CO poisoning (Table 2).

Author disclosures are available with the text of this article at www.atsjournals.org.
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